Serveur d'exploration sur les protéines de liaison chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural Insight into Binary Protein Metal-Organic Frameworks with Ferritin Nanocages as Linkers and Nickel Clusters as Nodes.

Identifieur interne : 000000 ( Main/Exploration ); suivant : 000001

Structural Insight into Binary Protein Metal-Organic Frameworks with Ferritin Nanocages as Linkers and Nickel Clusters as Nodes.

Auteurs : Chunkai Gu [République populaire de Chine] ; Hai Chen [République populaire de Chine] ; Yingjie Wang [République populaire de Chine] ; Tuo Zhang [République populaire de Chine] ; Hongfei Wang [République populaire de Chine] ; Guanghua Zhao [République populaire de Chine]

Source :

RBID : pubmed:31820500

Descripteurs français

English descriptors

Abstract

Metal-organic frameworks (MOFs) hold great promise for numerous applications. However, proteins, carriers of biological functions in living systems, have not yet been fully explored as building blocks for the construction of MOFs. This work presents a strategy for the fabrication of binary MOFs. Considering octahedral ferritin symmetry, four His2 (His-His) motifs were first incorporated into the exterior surface of a ferritin nanocage near each C4 channel, yielding protein linkers with multiple metal-binding sites (bisH-SF). Secondly, by adding nickel ions to bisH-SF solutions triggers the self-assembly of ferritin nanocages into a porous 3D crystalline MOF with designed protein lattice, where two adjacent ferritin molecules along the C4 symmetry axes are bridged by four dinuclear or tetranuclear nickel clusters depending on Ni2+ concentration. This work provides a simple approach for precise control over a binary protein-metal crystalline framework, and the resulting MOFs exhibited inherent ferroxidase activity and peroxidase-like catalytic activity.

DOI: 10.1002/chem.201905315
PubMed: 31820500


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural Insight into Binary Protein Metal-Organic Frameworks with Ferritin Nanocages as Linkers and Nickel Clusters as Nodes.</title>
<author>
<name sortKey="Gu, Chunkai" sort="Gu, Chunkai" uniqKey="Gu C" first="Chunkai" last="Gu">Chunkai Gu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Hai" sort="Chen, Hai" uniqKey="Chen H" first="Hai" last="Chen">Hai Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yingjie" sort="Wang, Yingjie" uniqKey="Wang Y" first="Yingjie" last="Wang">Yingjie Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Tuo" sort="Zhang, Tuo" uniqKey="Zhang T" first="Tuo" last="Zhang">Tuo Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Hongfei" sort="Wang, Hongfei" uniqKey="Wang H" first="Hongfei" last="Wang">Hongfei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006</wicri:regionArea>
<wicri:noRegion>030006</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Guanghua" sort="Zhao, Guanghua" uniqKey="Zhao G" first="Guanghua" last="Zhao">Guanghua Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31820500</idno>
<idno type="pmid">31820500</idno>
<idno type="doi">10.1002/chem.201905315</idno>
<idno type="wicri:Area/Main/Corpus">000011</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000011</idno>
<idno type="wicri:Area/Main/Curation">000011</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000011</idno>
<idno type="wicri:Area/Main/Exploration">000011</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural Insight into Binary Protein Metal-Organic Frameworks with Ferritin Nanocages as Linkers and Nickel Clusters as Nodes.</title>
<author>
<name sortKey="Gu, Chunkai" sort="Gu, Chunkai" uniqKey="Gu C" first="Chunkai" last="Gu">Chunkai Gu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Hai" sort="Chen, Hai" uniqKey="Chen H" first="Hai" last="Chen">Hai Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yingjie" sort="Wang, Yingjie" uniqKey="Wang Y" first="Yingjie" last="Wang">Yingjie Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Tuo" sort="Zhang, Tuo" uniqKey="Zhang T" first="Tuo" last="Zhang">Tuo Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Hongfei" sort="Wang, Hongfei" uniqKey="Wang H" first="Hongfei" last="Wang">Hongfei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006</wicri:regionArea>
<wicri:noRegion>030006</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Guanghua" sort="Zhao, Guanghua" uniqKey="Zhao G" first="Guanghua" last="Zhao">Guanghua Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Chemistry (Weinheim an der Bergstrasse, Germany)</title>
<idno type="eISSN">1521-3765</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Catalysis (MeSH)</term>
<term>Crystallization (MeSH)</term>
<term>Ferritins (chemistry)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Metal-Organic Frameworks (chemistry)</term>
<term>Nickel (chemistry)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Peroxidases (metabolism)</term>
<term>Porosity (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Multimerization (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Catalyse (MeSH)</term>
<term>Cristallisation (MeSH)</term>
<term>Ferritines (composition chimique)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Multimérisation de protéines (MeSH)</term>
<term>Nanoparticules métalliques (composition chimique)</term>
<term>Nickel (composition chimique)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxidases (métabolisme)</term>
<term>Porosité (MeSH)</term>
<term>Réseaux organométalliques (composition chimique)</term>
<term>Sites de fixation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Ferritins</term>
<term>Metal-Organic Frameworks</term>
<term>Nickel</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Ferritines</term>
<term>Nanoparticules métalliques</term>
<term>Nickel</term>
<term>Réseaux organométalliques</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Binding Sites</term>
<term>Catalysis</term>
<term>Crystallization</term>
<term>Oxidation-Reduction</term>
<term>Porosity</term>
<term>Protein Binding</term>
<term>Protein Multimerization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Catalyse</term>
<term>Cristallisation</term>
<term>Liaison aux protéines</term>
<term>Motifs d'acides aminés</term>
<term>Multimérisation de protéines</term>
<term>Oxydoréduction</term>
<term>Porosité</term>
<term>Sites de fixation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Metal-organic frameworks (MOFs) hold great promise for numerous applications. However, proteins, carriers of biological functions in living systems, have not yet been fully explored as building blocks for the construction of MOFs. This work presents a strategy for the fabrication of binary MOFs. Considering octahedral ferritin symmetry, four His
<sub>2</sub>
(His-His) motifs were first incorporated into the exterior surface of a ferritin nanocage near each C
<sub>4</sub>
channel, yielding protein linkers with multiple metal-binding sites (bisH-SF). Secondly, by adding nickel ions to bisH-SF solutions triggers the self-assembly of ferritin nanocages into a porous 3D crystalline MOF with designed protein lattice, where two adjacent ferritin molecules along the C
<sub>4</sub>
symmetry axes are bridged by four dinuclear or tetranuclear nickel clusters depending on Ni
<sup>2+</sup>
concentration. This work provides a simple approach for precise control over a binary protein-metal crystalline framework, and the resulting MOFs exhibited inherent ferroxidase activity and peroxidase-like catalytic activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31820500</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1521-3765</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Chemistry (Weinheim an der Bergstrasse, Germany)</Title>
<ISOAbbreviation>Chemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural Insight into Binary Protein Metal-Organic Frameworks with Ferritin Nanocages as Linkers and Nickel Clusters as Nodes.</ArticleTitle>
<Pagination>
<MedlinePgn>3016-3021</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/chem.201905315</ELocationID>
<Abstract>
<AbstractText>Metal-organic frameworks (MOFs) hold great promise for numerous applications. However, proteins, carriers of biological functions in living systems, have not yet been fully explored as building blocks for the construction of MOFs. This work presents a strategy for the fabrication of binary MOFs. Considering octahedral ferritin symmetry, four His
<sub>2</sub>
(His-His) motifs were first incorporated into the exterior surface of a ferritin nanocage near each C
<sub>4</sub>
channel, yielding protein linkers with multiple metal-binding sites (bisH-SF). Secondly, by adding nickel ions to bisH-SF solutions triggers the self-assembly of ferritin nanocages into a porous 3D crystalline MOF with designed protein lattice, where two adjacent ferritin molecules along the C
<sub>4</sub>
symmetry axes are bridged by four dinuclear or tetranuclear nickel clusters depending on Ni
<sup>2+</sup>
concentration. This work provides a simple approach for precise control over a binary protein-metal crystalline framework, and the resulting MOFs exhibited inherent ferroxidase activity and peroxidase-like catalytic activity.</AbstractText>
<CopyrightInformation>© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gu</LastName>
<ForeName>Chunkai</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-8564-3827</Identifier>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Hai</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yingjie</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Tuo</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-0900-9285</Identifier>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Hongfei</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Guanghua</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2018YFD0901004</GrantID>
<Agency>National Key R&D Program of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31901638</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Chemistry</MedlineTA>
<NlmUniqueID>9513783</NlmUniqueID>
<ISSNLinking>0947-6539</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000073396">Metal-Organic Frameworks</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7OV03QG267</RegistryNumber>
<NameOfSubstance UI="D009532">Nickel</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-73-2</RegistryNumber>
<NameOfSubstance UI="D005293">Ferritins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005293" MajorTopicYN="N">Ferritins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073396" MajorTopicYN="N">Metal-Organic Frameworks</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009532" MajorTopicYN="N">Nickel</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016062" MajorTopicYN="N">Porosity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">metal-organic frameworks</Keyword>
<Keyword MajorTopicYN="N">metalloproteins</Keyword>
<Keyword MajorTopicYN="N">microporous materials</Keyword>
<Keyword MajorTopicYN="N">nickel</Keyword>
<Keyword MajorTopicYN="N">protein engineering</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>12</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31820500</ArticleId>
<ArticleId IdType="doi">10.1002/chem.201905315</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>S. Chui, S. Lo, J. Charmant, A. Orpen, I. Williams, Science 1999, 283, 1148-1150.</Citation>
</Reference>
<Reference>
<Citation>H. Furukawa, K. Cordova, M. O'Keeffe, O. Yaghi, Science 2013, 341, 1230444.</Citation>
</Reference>
<Reference>
<Citation>Y. Han, J. Li, Y. Xie, G. Guo, Chem. Soc. Rev. 2014, 43, 5952-5981.</Citation>
</Reference>
<Reference>
<Citation>P. Horcajada, R. Gref, T. Baati, P. Allan, G. Maurin, P. Couvreur, G. Ferey, R. Morris, C. Serre, Chem. Rev. 2012, 112, 1232-1268.</Citation>
</Reference>
<Reference>
<Citation>S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695-704.</Citation>
</Reference>
<Reference>
<Citation>M. Peplow, Nature 2015, 520, 148-150.</Citation>
</Reference>
<Reference>
<Citation>K. Sumida, D. Rogow, J. Mason, T. McDonald, E. Bloch, Z. Herm, T. Bae, J. Long, Chem. Rev. 2012, 112, 724-781.</Citation>
</Reference>
<Reference>
<Citation>Z. Wang, S. Cohen, Chem. Soc. Rev. 2009, 38, 1315-1329.</Citation>
</Reference>
<Reference>
<Citation>M. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 2012, 112, 1196-1231.</Citation>
</Reference>
<Reference>
<Citation>J. Lee, O. Farha, J. Roberts, K. Scheidt, S. Nguyen, J. Hupp, Chem. Soc. Rev. 2009, 38, 1450-1459.</Citation>
</Reference>
<Reference>
<Citation>X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, H. Zhou, Chem. Soc. Rev. 2017, 46, 3386-3401.</Citation>
</Reference>
<Reference>
<Citation>S. Yuan, L. Zou, J. Qin, J. Li, L. Huang, L. Feng, X. Wang, M. Bosch, A. Alsalme, T. Cagin, H. Zhou, Nat. Commun. 2017, 8, 15356.</Citation>
</Reference>
<Reference>
<Citation>M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. Yaghi, Science 2002, 295, 469-472.</Citation>
</Reference>
<Reference>
<Citation>A. Kirchon, L. Feng, H. Drake, E. Joseph, H. Zhou, Chem. Soc. Rev. 2018, 47, 8611-8638.</Citation>
</Reference>
<Reference>
<Citation>L. Feng, S. Yuan, J. Qin, Y. Wang, A. Kirchon, D. Qiu, L. Cheng, S. Madrahimov, H. Zhou, Matter 2019, 1, 156-167.</Citation>
</Reference>
<Reference>
<Citation>A. Margolin, M. Navia, Angew. Chem. Int. Ed. 2001, 40, 2204-2222;</Citation>
</Reference>
<Reference>
<Citation>Angew. Chem. 2001, 113, 2262-2281.</Citation>
</Reference>
<Reference>
<Citation>J. Padilla, C. Colovos, T. Yeates, Proc. Natl. Acad. Sci. USA 2001, 98, 2217-2221.</Citation>
</Reference>
<Reference>
<Citation>Y. Lai, E. Reading, G. Hura, K. K.-L. Tsai, A. A. Laganowsky, F. Asturias, J. Tainer, C. Robinson, T. Yeates, Nat. Chem. 2014, 6, 1065-1071.</Citation>
</Reference>
<Reference>
<Citation>T. Ueno, Chem. Eur. J. 2013, 19, 9096-9102.</Citation>
</Reference>
<Reference>
<Citation>T. Douglas, M. Young, Nature 1998, 393, 152-155.</Citation>
</Reference>
<Reference>
<Citation>M. Uchida, M. Klem, M. Allen, P. Suci, M. Flenniken, E. Gillitzer, Z. Varpness, O. Liepold, M. Young, T. Douglas, Adv. Mater. 2007, 19, 1025-1042.</Citation>
</Reference>
<Reference>
<Citation>S. Tanaka, C. Kerfeld, M. Sawaya, F. Cai, S. Heinhorst, G. Cannon, T. Yeates, Science 2008, 319, 1083-1086.</Citation>
</Reference>
<Reference>
<Citation>Y. Azuma, T. Edwardson, N. Terasaka, D. Hilvert, J. Am. Chem. Soc. 2018, 140, 566-569.</Citation>
</Reference>
<Reference>
<Citation>G. Zhao, P. Ceci, A. Ilari, L. Giangiacomo, T. Laue, E. Chiancone, N. Chasteen, J. Biol. Chem. 2002, 277, 27689-27696.</Citation>
</Reference>
<Reference>
<Citation>P. Arosio, R. Ingrassia, P. Cavadini, Biochim. Biophys. Acta Gen. Subj. 2009, 1790, 589-599.</Citation>
</Reference>
<Reference>
<Citation>P. Sontz, J. Bailey, S. Ahn, F. Tezcan, J. Am. Chem. Soc. 2015, 137, 11598-11601.</Citation>
</Reference>
<Reference>
<Citation>J. Bailey, L. Zhang, J. Chiong, S. Ahn, F. Tezcan, J. Am. Chem. Soc. 2017, 139, 8160-8166.</Citation>
</Reference>
<Reference>
<Citation>D. Huard, K. Kane, F. Tezcan, Nat. Chem. Biol. 2013, 9, 169-176.</Citation>
</Reference>
<Reference>
<Citation>L. Zhang, J. Bailey, R. Subramanian, F. Tezcan, Nature 2018, 557, 86-91.</Citation>
</Reference>
<Reference>
<Citation>B. Zheng, K. Zhou, T. Zhang, C. Lv, G. Zhao, Nano Lett. 2019, 19, 4023-4028.</Citation>
</Reference>
<Reference>
<Citation>K. Zhou, J. Zang, H. Chen, W. Wang, H. Wang, G. Zhao, ACS Nano 2018, 12, 11323-11332.</Citation>
</Reference>
<Reference>
<Citation>M. Nepal, M. Sheedlo, C. Das, J. Chmielewski, J. Am. Chem. Soc. 2016, 138, 11051-11057.</Citation>
</Reference>
<Reference>
<Citation>F. Bou-Abdallah, G. Zhao, G. Biasiotto, M. Poli, P. Arosio, N. Chasteen, J. Am. Chem. Soc. 2008, 130, 17801-17811.</Citation>
</Reference>
<Reference>
<Citation>A. Novikov, Inorg. Chim. Acta 2018, 483, 21-25.</Citation>
</Reference>
<Reference>
<Citation>S. Alvarez, Dalton Trans. 2013, 42, 8617-8636.</Citation>
</Reference>
<Reference>
<Citation>S. Sculfort, P. Braunstein, Chem. Soc. Rev. 2011, 40, 2741-2760.</Citation>
</Reference>
<Reference>
<Citation>G. Zhao, P. Arosio, N. Chasteen, Biochemistry 2006, 45, 3429-3436.</Citation>
</Reference>
<Reference>
<Citation>Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Adv. Mater. 2010, 22, 2206-2210.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Gu, Chunkai" sort="Gu, Chunkai" uniqKey="Gu C" first="Chunkai" last="Gu">Chunkai Gu</name>
</noRegion>
<name sortKey="Chen, Hai" sort="Chen, Hai" uniqKey="Chen H" first="Hai" last="Chen">Hai Chen</name>
<name sortKey="Wang, Hongfei" sort="Wang, Hongfei" uniqKey="Wang H" first="Hongfei" last="Wang">Hongfei Wang</name>
<name sortKey="Wang, Yingjie" sort="Wang, Yingjie" uniqKey="Wang Y" first="Yingjie" last="Wang">Yingjie Wang</name>
<name sortKey="Zhang, Tuo" sort="Zhang, Tuo" uniqKey="Zhang T" first="Tuo" last="Zhang">Tuo Zhang</name>
<name sortKey="Zhao, Guanghua" sort="Zhao, Guanghua" uniqKey="Zhao G" first="Guanghua" last="Zhao">Guanghua Zhao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MetalBindProtPlantV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000000 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000000 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MetalBindProtPlantV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31820500
   |texte=   Structural Insight into Binary Protein Metal-Organic Frameworks with Ferritin Nanocages as Linkers and Nickel Clusters as Nodes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31820500" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MetalBindProtPlantV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:03:59 2020. Site generation: Fri Nov 20 11:04:44 2020